Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Clin Kidney J ; 16(2): 272-284, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2285433

ABSTRACT

Background: Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods: In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results: uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions: Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.

3.
Cell ; 2023.
Article in English | EuropePMC | ID: covidwho-2234048

ABSTRACT

ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically-targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance, and as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by comorbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor. ACE2 plays fundamental roles in human physiology and disease. This review summarizes ACE2's functions, highlights its relationship with SARS-CoV-2, describes implications for long COVID, and provides a framework for developing universal therapeutic strategies against current and future SARS-CoV-2 variants by exploring the ACE2 pathway and interfering with the spike-ACE2 interaction.

4.
Cell ; 186(5): 906-922, 2023 03 02.
Article in English | MEDLINE | ID: covidwho-2220514

ABSTRACT

ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A/metabolism , Pandemics
5.
Am J Physiol Heart Circ Physiol ; 323(6): H1262-H1269, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2117986

ABSTRACT

Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Cricetinae , Infant , SARS-CoV-2 , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Inflammation
6.
Curr Heart Fail Rep ; 19(6): 458-466, 2022 12.
Article in English | MEDLINE | ID: covidwho-2048548

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID-19) pandemic has popularized the usage of hydroxychloroquine and chloroquine (HCQ/CQ) as treatments for COVID-19. Previously used as anti-malarial and now commonly used in rheumatologic conditions, preliminary in vitro studies have demonstrated these medications also have anti-viral properties. Retinopathy and neuromyopathy are well recognized complications of using these treatments; however, cardiotoxicity is under-recognized. This review will discuss the implications and cardiotoxicity of HCQ/CQ, their mechanisms of action, and their utility in COVID-19. RECENT FINDINGS: Early clinical trials demonstrated a modest benefit of HCQ in COVID-19, causing a push for the usage of it. However, further large multi-center randomized control centers, demonstrated no benefit, and even a trend towards worse outcomes. The predominant cardiac complication observed with HCQ in COVID-19 was cardiac arrhythmias and prolonging of the QT interval. However, with chronic usage of HCQ/CQ, the development of heart failure (HF) and cardiomyopathy (CM) can occur. Although, most adverse cardiac events related to HCQ/CQ usage in COVID-19 were secondary to conduction disorders given the short duration of treatment, HCQ/CQ can cause CM and HF, with chronic usage. Given the insufficient evidence, HCQ/CQ usage in COVID-19 is not routinely recommended, especially with novel therapies now being developed and used. Additionally, usage of HCQ/CQ should prompt initial cardiac evaluation with ECG, and yearly monitoring, with consideration for advanced imaging if clinically warranted. The diagnosis of HCQ/CQ cardiomyopathy is important, as prompt cessation can allow for recovery when these changes are still reversible.


Subject(s)
COVID-19 Drug Treatment , Heart Failure , Humans , Hydroxychloroquine/adverse effects , Pandemics , SARS-CoV-2 , Cardiotoxicity/etiology , Heart Failure/drug therapy , Chloroquine/adverse effects
7.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1987835

ABSTRACT

The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) complications. We aimed to investigate whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n = 146) and healthy individuals (n = 47) were collected during hospitalization and routine visits. Plasma microbiome was analyzed using 16S rRNA sequencing and gut permeability markers including fatty acid binding protein 2 (FABP2), peptidoglycan (PGN), and lipopolysaccharide (LPS) in both patient cohorts. Plasma samples of both cohorts contained predominately Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria. COVID-19 subjects exhibit significant dysbiosis (p = 0.001) of the plasma microbiome with increased abundance of Actinobacteria spp. (p = 0.0332), decreased abundance of Bacteroides spp. (p = 0.0003), and an increased Firmicutes:Bacteroidetes ratio (p = 0.0003) compared to healthy subjects. The concentration of the plasma gut permeability marker FABP2 (p = 0.0013) and the gut microbial antigens PGN (p < 0.0001) and LPS (p = 0.0049) were significantly elevated in COVID-19 patients compared to healthy subjects. These findings support the notion that the intestine may represent a source for bacteremia and contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.


Subject(s)
Actinobacteria , COVID-19 , Gastrointestinal Microbiome , Microbiota , Actinobacteria/genetics , Bacteria/genetics , Dysbiosis/microbiology , Feces/microbiology , Firmicutes/genetics , Gastrointestinal Microbiome/genetics , Humans , Lipopolysaccharides , Peptidoglycan , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
9.
Front Public Health ; 10: 838514, 2022.
Article in English | MEDLINE | ID: covidwho-1879480

ABSTRACT

Background: The COVID-19 pandemic has seen a large surge in case numbers over several waves, and has critically strained the health care system, with a significant number of cases requiring hospitalization and ICU admission. This study used a decision tree modeling approach to identify the most important predictors of severe outcomes among COVID-19 patients. Methods: We identified a retrospective population-based cohort (n = 140,182) of adults who tested positive for COVID-19 between 5th March 2020 and 31st May 2021. Demographic information, symptoms and co-morbidities were extracted from a communicable disease and outbreak management information system and electronic medical records. Decision tree modeling involving conditional inference tree and random forest models were used to analyze and identify the key factors(s) associated with severe outcomes (hospitalization, ICU admission and death) following COVID-19 infection. Results: In the study cohort, nearly 6.37% were hospitalized, 1.39% were admitted to ICU and 1.57% died due to COVID-19. Older age (>71Y) and breathing difficulties were the top two factors associated with a poor prognosis, predicting about 50% of severe outcomes in both models. Neurological conditions, diabetes, cardiovascular disease, hypertension, and renal disease were the top five pre-existing conditions that altogether predicted 29% of outcomes. 79% of the cases with poor prognosis were predicted based on the combination of variables. Age stratified models revealed that among younger adults (18-40 Y), obesity was among the top risk factors associated with adverse outcomes. Conclusion: Decision tree modeling has identified key factors associated with a significant proportion of severe outcomes in COVID-19. Knowledge about these variables will aid in identifying high-risk groups and allocating health care resources.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , Decision Trees , Humans , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2
10.
Hypertension ; 79(2): 365-378, 2022 02.
Article in English | MEDLINE | ID: covidwho-1541968

ABSTRACT

ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Renin-Angiotensin System/physiology , SARS-CoV-2 , ADAM17 Protein/blood , Aged , COVID-19/mortality , COVID-19/therapy , Enzyme Activation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Respiration, Artificial , Risk , Treatment Outcome
11.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Article in English | MEDLINE | ID: covidwho-1527886

ABSTRACT

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Subject(s)
Aging/metabolism , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Gene Expression Regulation, Enzymologic , Receptors, Virus/biosynthesis , SARS-CoV-2/physiology , Sex Characteristics , Aging/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Disease Susceptibility , Female , Heart/virology , Humans , Intestine, Small/enzymology , Intestine, Small/virology , Kidney/enzymology , Kidney/virology , Lung/enzymology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardium/enzymology , Organ Specificity , Receptors, Virus/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Young Adult
12.
Nature ; 588(7838): 466-472, 2020 12.
Article in English | MEDLINE | ID: covidwho-1075229

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Subject(s)
Myocardium/cytology , Single-Cell Analysis , Transcriptome , Adipocytes/classification , Adipocytes/metabolism , Adult , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Epithelial Cells/classification , Epithelial Cells/metabolism , Epithelium , Female , Fibroblasts/classification , Fibroblasts/metabolism , Gene Expression Profiling , Genome-Wide Association Study , Heart Atria/anatomy & histology , Heart Atria/cytology , Heart Atria/innervation , Heart Ventricles/anatomy & histology , Heart Ventricles/cytology , Heart Ventricles/innervation , Homeostasis/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocytes, Cardiac/classification , Myocytes, Cardiac/metabolism , Neurons/classification , Neurons/metabolism , Pericytes/classification , Pericytes/metabolism , Receptors, Coronavirus/analysis , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Stromal Cells/classification , Stromal Cells/metabolism
13.
Am J Physiol Heart Circ Physiol ; 320(1): H296-H304, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-961166

ABSTRACT

Biological sex is increasingly recognized as a critical determinant of health and disease, particularly relevant to the topical COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Epidemiological data and observational reports from both the original SARS epidemic and the most recent COVID-19 pandemic have a common feature: males are more likely to exhibit enhanced disease severity and mortality than females. Sex differences in cardiovascular disease and COVID-19 share mechanistic foundations, namely, the involvement of both the innate immune system and the canonical renin-angiotensin system (RAS). Immunological differences suggest that females mount a rapid and aggressive innate immune response, and the attenuated antiviral response in males may confer enhanced susceptibility to severe disease. Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19, either to serve as a protective mechanism by deactivating the RAS or as the receptor for viral entry, respectively. Loss of membrane ACE2 and a corresponding increase in plasma ACE2 are associated with worsened cardiovascular disease outcomes, a mechanism attributed to a disintegrin and metalloproteinase (ADAM17). SARS-CoV-2 infection also leads to ADAM17 activation, a positive feedback cycle that exacerbates ACE2 loss. Therefore, the relationship between cardiovascular disease and COVID-19 is critically dependent on the loss of membrane ACE2 by ADAM17-mediated proteolytic cleavage. This article explores potential mechanisms involved in COVID-19 that may contribute to sex-specific susceptibility focusing on the innate immune system and the RAS, namely, genetics and sex hormones. Finally, we highlight here the added challenges of gender in the COVID-19 pandemic.


Subject(s)
Adaptive Immunity/immunology , Androgens/immunology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , Estrogens/immunology , Immunity, Innate/immunology , Receptors, Coronavirus/genetics , ADAM17 Protein/metabolism , Adaptive Immunity/genetics , Androgens/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/metabolism , COVID-19/mortality , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Estrogens/metabolism , Female , Genes, X-Linked/genetics , Genes, X-Linked/immunology , Humans , Immunity, Innate/genetics , Male , Promoter Regions, Genetic , Receptors, Coronavirus/metabolism , Renin-Angiotensin System/genetics , Renin-Angiotensin System/immunology , Response Elements/genetics , SARS-CoV-2/metabolism , Severity of Illness Index , Sex Characteristics , Sex Factors , X Chromosome Inactivation
16.
Hypertension ; 76(3): 651-661, 2020 09.
Article in English | MEDLINE | ID: covidwho-714225

ABSTRACT

Discovery of ACE2 (angiotensin-converting enzyme 2) revealed that the renin-angiotensin system has 2 counterbalancing arms. ACE2 is a major player in the protective arm, highly expressed in lungs and gut with the ability to mitigate cardiopulmonary diseases such as inflammatory lung disease. ACE2 also exhibits activities involving gut microbiome, nutrition, and as a chaperone stabilizing the neutral amino acid transporter, B0AT1, in gut. But the current interest in ACE2 arises because it is the cell surface receptor for the novel coronavirus, severe acute respiratory syndrome coronavirus-2, to infect host cells, similar to severe acute respiratory syndrome coronavirus-2. This suggests that ACE2 be considered harmful, however, because of its important other roles, it is paradoxically a potential therapeutic target for cardiopulmonary diseases, including coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2. This review describes the discovery of ACE2, its physiological functions, and its place in the renin-angiotensin system. It illustrates new analyses of the structure of ACE2 that provides better understanding of its actions particularly in lung and gut, shedding of ACE2 by ADAM17 (a disintegrin and metallopeptidase domain 17 protein), and role of TMPRSS2 (transmembrane serine proteases 2) in severe acute respiratory syndrome coronavirus-2 entry into host cells. Cardiopulmonary diseases are associated with decreased ACE2 activity and the mitigation by increasing ACE2 activity along with its therapeutic relevance are addressed. Finally, the potential use of ACE2 as a treatment target in COVID-19, despite its role to allow viral entry into host cells, is suggested.


Subject(s)
Coronavirus Infections , Hypertension, Pulmonary , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral , Angiotensin-Converting Enzyme 2 , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Disease Management , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Renin-Angiotensin System/physiology , SARS-CoV-2
17.
Diabetes ; 69(9): 1875-1886, 2020 09.
Article in English | MEDLINE | ID: covidwho-646761

ABSTRACT

Individuals with diabetes suffering from coronavirus disease 2019 (COVID-19) exhibit increased morbidity and mortality compared with individuals without diabetes. In this Perspective, we critically evaluate and argue that this is due to a dysregulated renin-angiotensin system (RAS). Previously, we have shown that loss of angiotensin-I converting enzyme 2 (ACE2) promotes the ACE/angiotensin-II (Ang-II)/angiotensin type 1 receptor (AT1R) axis, a deleterious arm of RAS, unleashing its detrimental effects in diabetes. As suggested by the recent reports regarding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), upon entry into the host, this virus binds to the extracellular domain of ACE2 in nasal, lung, and gut epithelial cells through its spike glycoprotein subunit S1. We put forth the hypothesis that during this process, reduced ACE2 could result in clinical deterioration in COVID-19 patients with diabetes via aggravating Ang-II-dependent pathways and partly driving not only lung but also bone marrow and gastrointestinal pathology. In addition to systemic RAS, the pathophysiological response of the local RAS within the intestinal epithelium involves mechanisms distinct from that of RAS in the lung; however, both lung and gut are impacted by diabetes-induced bone marrow dysfunction. Careful targeting of the systemic and tissue RAS may optimize clinical outcomes in subjects with diabetes infected with SARS-CoV-2.


Subject(s)
Angiotensin II/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Diabetes Mellitus/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2 , Bone Marrow/metabolism , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Humans , Intestinal Mucosa/metabolism , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Severity of Illness Index
19.
CJC Open ; 2(4): 265-272, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-549011

ABSTRACT

BACKGROUND: The literature indicates that cardiovascular disease (CVD; including stroke), older age, and availability of health care resources affect COVID-19 case fatality rates (CFRs). The cumulative effect of COVID-19 CFRs in global CVD populations and the extrapolated effect on access to health care services in the CVD population in Canada are not fully known. In this study we explored the relationships of factors that might affect COVID-19 CFRs and estimated the potential indirect effects of COVID-19 on Canadian health care resources. METHODS: Country-level epidemiological data were analyzed to study the correlation, main effect, and interaction between COVID-19 CFRs and: (1) the proportion of the population with CVD; (2) the proportion of the population 65 years of age or older; and (3) the availability of essential health services as defined by the World Health Organization Universal Health Coverage index. For indirect implications on health care resources, estimates of the volume of postponed coronary artery bypass grafting, percutaneous coronary intervention, and valve surgeries in Ontario were calculated. RESULTS: Positive correlations were found between COVID-19 CFRs and: (1) the proportion of the population with CVD (ρ = 0.40; P = 0.001); (2) the proportion of the population 65 years of age or older (ρ = 0.43; P = 0.0005); and (3) Universal Health Coverage index (ρ = 0.27; P = 0.03). For every 1% increase in the proportion of the population 65 years of age or older or proportion of the population with CVD, the COVID-19 CFR was 9% and 19% higher, respectively. Approximately 1252 procedures would be postponed monthly in Ontario because of current public health measures. CONCLUSIONS: Countries with more prevalent CVD reported higher COVID-19 CFRs. Strain on health care resources is likely in Canada.


CONTEXTE: La littérature indique que les maladies cardiovasculaires (MCV, incluant les accidents vasculaires cérébraux), l'âge avancé et la facilité d'accès aux ressources de soins de santé ont une incidence sur les taux de létalité (TL) des cas de COVID-19. L'effet cumulatif du TL de la COVID-19 dans l'ensemble de la population atteinte de MCV et l'impact anticipé sur l'accès aux services de santé dans la population atteinte de MCV au Canada ne sont pas entièrement connus. Cette étude a exploré les liens entre les facteurs pouvant influencer le TL des cas de COVID-19 et a estimé le potentiel impact indirect de la COVID-19 sur les ressources de soins de santé au Canada. MÉTHODES: Les données épidémiologiques à l'échelle du pays ont été analysées pour étudier la corrélation, l'effet principal et l'interaction entre le TL de laCOVID-19 et : 1) la proportion de la population souffrant de MCV, 2) la proportion de la population ≥ 65 ans, et 3) l'accessibilité des services de santé essentiels tels que définis par l'indice de couverture sanitaire universelle (CSU) de l'Organisation Mondiale de la Santé. Pour les implications indirectes concernant les ressources de santé, des estimations du volume d'opération de pontages coronariens, d'interventions coronariennes percutanées et de chirurgies valvulaires reportées en Ontario ont été calculées. RÉSULTATS: Des corrélations positives ont été trouvées entre le TL de la COVID-19 et 1) la proportion de la population souffrant de MCV (ρ= 0,40, P = 0,001), 2) la proportion de la population ≥ 65 ans (ρ= 0,43, P = 0,0005), et 3) l'indice CSU (ρ= 0,27, P = 0,03). Pour chaque augmentation de 1 % de la proportion de la population ≥ 65 ans ou de la proportion de la population souffrant de MCV, le TL de la COVID-19 était respectivement supérieur de 9 % et 19 %. Environ 1 252 interventions seraient reportées chaque mois en Ontario en raison des mesures de santé publique actuelles. CONCLUSIONS: Les pays où les MCV sont plus répandues ont signalé un TL de la COVID-19 plus élevé. Il est probable que les ressources de soins de santé soient soumises à de fortes contraintes au Canada.

20.
Am J Physiol Endocrinol Metab ; 319(1): E43-E47, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-437124

ABSTRACT

The COVID-19 pandemic, caused by the novel coronavirus, SARS-CoV-2, is threating our health systems and daily lives and is responsible for causing substantial morbidity and mortality. In particular, aged individuals and individuals with comorbidities, including obesity, diabetes mellitus, and hypertension, have significantly higher risks of hospitalization and death than normal individuals. The renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of diabetes mellitus, obesity, and hypertension. Angiotensin-converting enzyme 2 (ACE2), belonging to the RAS family, has received much attention during this COVID-19 pandemic, owing to the fact that SARS-CoV-2 uses ACE2 as a receptor for cellular entry. Additionally, the RAS greatly affects energy metabolism in certain pathological conditions, including cardiac failure, diabetes mellitus, and viral infections. This article discusses the potential mechanisms by which SARS-CoV-2 modulates the RAS and energy metabolism in individuals with obesity and diabetes mellitus. The article aims to highlight the appropriate strategies for combating the COVID-19 pandemic in the clinical setting and emphasize on the areas that require further investigation in relation to COVID-19 infections in patients with obesity and diabetes mellitus from the viewpoint of endocrinology and metabolism.


Subject(s)
Coronavirus Infections/physiopathology , Diabetes Mellitus/physiopathology , Energy Metabolism , Obesity/physiopathology , Pneumonia, Viral/physiopathology , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Diabetes Mellitus/virology , Humans , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL